Cayley graphs and analysis of quantum cost for reversible circuit synthesis

نویسندگان

  • A. C. Ribeiro
  • Celina M. H. de Figueiredo
  • Franklin L. Marquezino
  • Luis Antonio Brasil Kowada
چکیده

We propose the theory of Cayley graphs as a framework to analyse gate counts and quantum costs resulting from reversible circuit synthesis. Several methods have been proposed in the reversible logic synthesis literature by considering different libraries whose gates are associated to the generating sets of certain Cayley graphs. In a Cayley graph, the distance between two vertices corresponds to the optimal circuit size. The lower bound for the diameter of Cayley graphs is also a lower bound for the worst case for any algorithm that uses the corresponding gate library. In this paper, we study two Cayley graphs on the Symmetric Group S2n : the first, denoted by In, is defined by a generating set associated to generalized Toffoli gates; and the second, the hypercube Cayley graph Hn, is defined by a generating set associated to multiple-control Toffoli gates. Those two Cayley graphs have degree n2 and order 2n!. Maslov, Dueck and Miller proposed a reversible circuit synthesis that we model by the Cayley graph In. We propose a synthesis algorithm based on the Cayley graph Hn with upper bound of (n−1)2n+1 multiple-control Toffoli gates. In addition, the diameter of the Cayley graph Hn gives a lower bound of n2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

A Novel Design of Reversible Multiplier Circuit (TECHNICAL NOTE)

Adders and multipliers are two main units of the computer arithmetic processors and play an important role in reversible computations. The binary multiplier consists of two main parts, the partial products generation circuit (PPGC) and the reversible parallel adders (RPA). This paper introduces a novel reversible 4×4 multiplier circuit that is based on an advanced PPGC with Peres gates only. Ag...

متن کامل

Performance Analysis of Reversible Sequential Circuits Based on Carbon NanoTube Field Effect Transistors (CNTFETs)

This study presents the importance of reversible logic in designing of high performance and low power consumption digital circuits. In our research, the various forms of sequential reversible circuits such as D, T, SR and JK flip-flops are investigated based on carbon nanotube field-effect transistors. All reversible flip-flops are simulated in two voltages, 0.3 and 0.5 Volt. Our results show t...

متن کامل

Fault Tolerant Reversible QCA Design using TMR and Fault Detecting by a Comparator Circuit

Quantum-dot Cellular Automata (QCA) is an emerging and promising technology that provides significant improvements over CMOS. Recently QCA has been advocated as an applicant for implementing reversible circuits. However QCA, like other Nanotechnologies, suffers from a high fault rate. The main purpose of this paper is to develop a fault tolerant model of QCA circuits by redundancy in hardware a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1209.3275  شماره 

صفحات  -

تاریخ انتشار 2012